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SUMMARY

Relaxation-based multigrid solvers for the steady incompressible Navier-Stokes equations are examined to
determine their computational speed and robustness. Four relaxation methods were used as smoothers in
a common tailored multigrid procedure. The resulting solvers were applied to three two-dimensional flow
problems, over a range of Reynolds numbers, on both uniform and highly stretched grids. In all cases the L,
norm of the velocity changes is reduced to 10~ ¢ in a few 10’s of fine-grid sweeps. The results of the study are
used to draw conclusions on the strengths and weaknesses of the individual relaxation methods as well as
those of the overall multigrid procedure when used as a solver on highly stretched grids.
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1. INTRODUCTION

In recent years there has been considerable progress in the development of multigrid solvers for
the steady incompressible Navier-Stokes equations. Multigrid methods are attractive for this
system because of their ability to give grid-independent convergence rates as the number of grid
points is increased to large values in a fixed domain. Large numbers of points are commonly
required in the solution of practical problems. The multigrid process and its application to fluid
dynamics has been well described by Brandt.! Fuchs? 3 examined the smoothing properties of
different relaxation schemes as well as the effect of stretched grids on multigrid performance. Ghia
et al.* used the streamfunction—vorticity formulation with the coupled strongly implicit scheme of
Rubin and Khosla’ as a smoothing operator and an accomodative multigrid cycle. Defect
correction was used to increase the accuracy of the convection terms. Their results for the driven
cavity problem are taken as the standard today. Vanka® employed a locally coupled
Gauss—Seidel smoother for the primitive variable formulation together with an accomodative
cycle. Demuren’ extended Vanka’s smoother to one in which local corrections were coupled to
neighbouring pressure corrections and solved the resulting equations by both a strongly implicit
technique and an alternating direction line Gauss—Seidel scheme. Thompson and Ferziger® used
Vanka’s smoother as well as a fully coupled alternating direction line Gauss—Seidel extension
again with an accomodative cycle. This study also introduced defect correction together with
local adaptive grid refinement. Sivaloganathan and Shaw?® used the SIMPLE pressure-correction
scheme of Patankar and Spalding!'® as a smoother for the primitive variable formulation. The
smoothing analysis given in Shaw and Sivaloganathan!! indicates that a fixed V-cycle was used
in the multigrid process. Dick'? developed a partially flux-split discretization for the primitive
variable formulation and used a coupled red-black smoother and a fixed W-cycle. Finally, a few

0271-2091/93/190543-24817.00 Received 27 October 1992
© 1993 by John Wiley & Sons, Ltd. Revised 24 March 1993



544 PETER M. SOCKOL

solvers have used boundary-fitted curvillinear co-ordinates with primitive variables. Joshi and
Vanka'? extended Vanka’s coupled Gauss-Seidel relaxation technique to this system. Rayner4
and Shyy et al.!® developed variants to the SIMPLE pressure-correction method for use as
smoothers with the latter applicable to all speeds. All the last three references employed a fixed
V-cycle.

In most of the above efforts, a single relaxation scheme has been used as a smoothing operator
in a chosen multigrid cycle and applied to one or more problems in order to demonstrate the
characteristics of the flow solver. This does not provide much guidance in the choice of smoother
or multigrid cycle for the developer of a solver for a particular application. Furthérmore, among
the above works only Brandt,! Fuchs? and Thompson and Ferziger® have addressed the need for
highly refined grids in local regions which is present in most flow problems. The adaptive use of
several levels of uniform local subgrids® is attractive in the multigrid context, since it adds extra
points only where they are needed. A more conventional approach employs stretched grids which
may make it easier to resolve thin regions of steep gradients such as boundary layers adjacent to
solid surfaces. This raises the question, however, as to whether fast multigrid performance can be
maintained on these grids.

The present work considers the primitive variable formulation of the steady incompressible
Navier-Stokes equations in Cartesian co-ordinates. Four different relaxation methods were
employed as smoothers and embedded in a common tailored multigrid procedure. The resulting
solvers were applied to three two-dimensional problems over a range of Reynolds numbers on
both uniform and highly stretched grids. The results from this study are used to draw conclusions
on the strengths and weaknesses of the individual relaxation schemes as well as those of the
overall multigrid procedure when used as a solver on highly stretched grids.

2. DISCRETE FORMULATION

The steady incompressible Navier-Stokes equations in non-dimensional form are
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where u and v are the x and y velocity components, p is the pressure, and Re is the Reynolds
number.
These equations are discretized on a staggered grid (Figure 1) using a finite volume approach
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where A,, V,, A,, V,, are forward and backward differences in x and y, respectively, dx;=x;—x;_,,
dy,-=y,-—yj_ 1 and
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Figure 1. Variable locations on staggered grid

The coefficients a* and a” are defined below. When these expressions require points outside the
domain, such as L*u; ; adjacent to a horizontal boundary, these points are transferred to the
boundary by linear extrapolation. A similar treatment is employed at an outflow boundary where
p:, j is specified.

The coefficients in equations (7) and (8) are obtained from the hybrid scheme of Patankar and
Spalding.!® In this approximation the convective differencing in a given direction switches from
second-order central to first-order upwind and the viscous term is dropped whenever the
appropriate cell Reynolds number exceeds 2. The accuracy of the scheme can be improved by
a defect correction technique such as that employed by Thompson and Ferziger.® The coefficients
are first obtained for equations centred on the p; ; locations:

ab =max(|cy|, Do)+ Cy,
af=max(|c.|, D.)—c.,
ag=max(|c}, Ds)+c;, ©)
af=max(|c,}, D,)—c,,
al=al +al+al+af
with _
Cw=ui-1,;dy;/2,
Ce=1u;,;dy;/2,
Cs=0; j-1dx;/2, (10)
Ch= v,-.jdxi/Z,
D, =Re~'dy;/dx{,
D,=Re"1dyj/dx‘i'+1 ’
D,=Re™'dx,;/dy], (11)
D,=Re™'dx;/dy3.
and dxi=(dx;_ +dx;)/2, dyj=(dy;— 1 +dy;)/2. The coefficients a” are stored and frozen during
a sweep through the grid. The coefficients a* and a” are obtained by averaging. Thus,
(ac)i, j=[(al), j+(@)+1,;1/2, (ac), j=[(ad), j+(ad), ;j+11/2.

For the convective terms, this is equivalent to obtaining the cell face velocities by averaging. For
the viscous terms, this introduces an error on a stretched grid that is of the same order as the
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truncation error. In the immediate vicinity of a re-entrant corner, this practice must be modified
to ensure that the convective velocity normal to the wall is set to zero.

3. RELAXATION METHODS

Each of the relaxation methods employed as a multigrid smoother in this work is adapted from,
or similar to, a known technique from the literature, and hence the descriptions of the schemes
will be brief. The methods are written in a common block-tridiagonal form for the corrections
along a horizontal line

~AAV;_ 1 +BAV—CAV,, =D, (12)

where AV, is the vector of local corrections, A;, B;, C; are square matrices and D; is the vector of
local residuals. By appropriate choices of the square matrices, equation (12) can be used to
describe both point or explicit schemes and semi-implicit or fully implicit schemes. This equation
is now particularized for each of the methods.

The first method, here labelled Block Gauss—Seidel (BGS), is a locally coupled explicit scheme
introduced by Vanka.® Four discrete momentum equations and one continuity equation are
solved for a set of local corrections. In this case

Avi=(Aui—l.j: Aui,j, Avi,j-la Avi,j’ APi,j)T,

(13)
D;=(Ri_1.;, R, RY j-1, R}, j, Ri, ),
B; is a 5 x 5 matrix,

(@)i-1.; 0 0 0 dy;

0 (at), ; 0 0 —dy;
B;= 0 0 (a)j-1 O dx; | , (14)

0 0 0 (@z),; —dx;

—dy; dy; —dx; dx; 0

and A;=C,;=0. Elimination of the Au’s and Av’s gives a simple expression for Ap; ; and back
substitution then gives the local Au’s and Av’s. In a single sweep through the grid, each
momentum equation is updated twice and each continuity equation once.

The second method, labelled Pressure-linked Line Block Gauss—Scidel (PLBGS), is a locally
coupled semi-implicit scheme which is similar to the line relaxation scheme of Demuren.” This
case is a simple extension of BGS:

AV;=(Ay;, A g, Avi,j, Ap;, j)T.-

(15)
Di=(R'i‘,ja ?,j— 1 R:",j, R?,j)r-

B, is a 4 x 4 matrix obtained by eliminating the top row and left column from equation (14), and
A;=C;=0 except for the lower left and upper right corner elements, respectively. Elimination of
the Au’s and Av’s gives a scalar tridiagonal equation for the Ap’s along the horizontal line and
back substitution then gives the Auw’s and Av’s along the line. During a single sweep in the
+ y-direction, each u-momentum equation is updated once, each v-momentum equation twice,
and each continuity equation once. The fewer momentum updates and the efficiency of the scalar
tridiagonal inversion gives a scheme that costs 15% less per sweep than BGS. In general, both
x and y sweeps are combined in an alternating pattern to form an effective relaxation technique.
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The third method, labelled Line Block Gauss—Seidel (LBGS), is a locally coupled, fully implicit
scheme, which is apparently very similar to the coupled alternating line approach of Thompson
and Ferziger.® The vectors AV; and D; and the matrix B; are the same as for PLBGS, while A; and
C; are 4 x4 matrices having diagonal plus the lower left and upper right corner elements,
respectively. The number of equation updates and sweeping patterns are the same as for PLBGS.
In this case algebraic elimination in the block-tridiagonal inversion gives a scheme that costs only
15% more per sweep than BGS.

The final method is the Semi-Implicit Pressure-Correction scheme (SIMPLE) introduced by
Patankar and Spalding.'® In this case

AV,=(Au, ;, Av, ;)T

D;=(R} , R} ;)", (1o

where A;, B;, C; are diagonal 2 x 2 matrices. The pressure is obtained from an elliptic equation
derived by substituting reduced forms of the discrete momentum equations for coupled velocity
and pressure corrections into continuity. For this work one SIMPLE iteration consists of a single
scalar line Gauss—Seidel sweep for each momentum equation with the pressure fixed. This is
followed by four alternating direction line Gauss—Seidel sweeps of the elliptic pressure-correction
equation. Taking more than one sweep through the momentum equations before correcting the
pressure invariably resulted in partial decoupling of the velocity components and slower conver-
gence. Each of these combined SIMPLE iterations costs about 30% more than one sweep of
BGS.

For each of these relaxation techniques, some degree of underrelaxation is required to obtain
convergence. In the present work this is implemented through direct modification of the
momentum equations. For BGS, LBGS and SIMPLE, the diagonal velocity coefficients, af and
a.,in the matrix B, are divided by a factor rpop, Where 0 <rpom < 1. For PLBGS the residuals, R*
and R’ are multiplied by rp.,. In addition, for SIMPLE the pressure corrections and the
corresponding velocity corrections required to satisfy continuity are unrelaxed.

Finally, we note that considerable improvement can be obtained with each of the above
methods by employing a symmetric sweeping pattern. Thus, for BGS each lexicographic sweep is
followed by one in the reverse direction. For PLBGS, LBGS and SIMPLE, a four sweep
symmetric alternating line pattern is used, i.. relaxation is performed sequentially in the +x, +y,
—y and —x directions. These techniques result in an approximately 25% improvement in
convergence rates.

4. MULTIGRID ITERATION

Local relaxation methods, such as those of the previous section, are in general much more
efficient at reducing short-wavelength error components on a given grid than those of longer
wavelength. Multigrid seeks to overcome this problem by transferring the long-wave components
of the solution to a sequence of coarser grids where relaxation is more effective and much cheaper.
Since the FAS—-FMG (full approximation scheme—full multigrid) technique used in this work has
been well documented in the literature,’ 4 5~ the present description of the multigrid process will
be brief. The focus will, instead, be on the current implementation and in particular on those
aspects which are important in achieving a fast robust Navier-Stokes solver.

Introduce a sequence of grids k, where k=1 is the coarsest and k=m is the finest grid. On any
grid the system of equations is represented by

L*U*=F¥*, 17
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where L* is a discrete approximation to the differential operator on grid k, U* is the vector of
unknowns and F* is defined below. Next define a relaxation operator S* for equation (17),
a fine-to-coarse grid restriction operator I%., for unknowns, a restriction operator 1%, , for
residuals, R*=F*— L*U*, and a coarse-to-fine grid prolongation operator for corrections I't*!.
With these definitions, the FAS multigrid cycle M * for improving an approximation U¥ is defined
recursively as follows:

If k=m, F* is the right-hand side of the discrete system.

If k=1, solve equation (17) by several relaxation sweeps.

If k>1, do these six steps:

(a) Relax on grid k,
Uh_(sk)v; Uk.
(b) Restrict U* to grid k1,
Ut Ut
(c) Restrict R* to grid k—1 and form source term
F*le[*'U* '+ IR~ (18)
(d) Perform y multigrid cycles on U*~!:
Uk_li-(Mk—l)y Uh_l.
(e) Prolong corrections to grid k,
Uk U*+I5_ (U =Tk 1 U*).
(f) Relax on grid k,
Uki-(Sk)vz Uk.

For y=1, this is called a V-cycle or ¥(vy, v,), and for y=2, this is called a W-cycle or W(v,, v,).
Finally, the full FAS-FMG technique is obtained by starting the computation on a very coarse
grid, iterating to ‘convergence’ with the FAS process, and interpolating the result to obtain the
initial values on the next finest grid. In this way the first approximation on the finest grid is
already close in much of the domain, an important consideration in non-linear problems.
Convergence criteria for each stage in the FAS-FMG process as used in the present work are
explained in Section 5.

In the present work the coarse grids are created by ‘standard coarsening’, i.e. every second grid

point in both x and y is deleted from one grid to the next coarser grid. The fine-to-coarse
restriction operator If employs cell-face averaging for the velocities,

“ic,i=(“i,_i-1d)/j—1+ui,jdyi)/dY;> vi j=(Ui—y,jdx;i- 1 +v; jdx;)/dx], (19)
and full weighting for the pressures,

Pi.j=(Pi-1,5-19%- 1 dyj- 1 +Pi-1, X1 dy;+ py j-1 dx, dyjy +py, ;dx; dy;)/(dx; dyF), (20)
where ( )° represents a coarse-grid value. The restriction operator If for residuals uses full
weighting, in which all the fine-grid contributions to a coarse-grid cell are accounted for
(Figure 2):

(IfR); ;=R ;1 +R};4+3(Ri- 1, ;-1 +Ri_1,j+Risy, j-1 +Risy, )

(21)
(I;':Rv)i.j=Rg—1,j+R:".j+%(R:"-l,j—1+R;".j—1+R:')—-l,j+1+R;‘,j+l)y
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Figure 2. Variable locations on fine and coarse staggered grids showing control volumes for full weighting of residuals

where R* and R®, given by equation (4) and (5), are already area-weighted. With the cell-face
averaging given by equation (19) and full weighting similar to equation (20) for R°, as defined by
equation (6), the coarse-grid source term of equation (18) vanishes for the continuity equation.

In many of the previous works® 75 cell-face averaging was also used in the restriction of R
and R". For uniform grids this has little effect on the multigrid convergence rate. For the highly
stretched grids employed in this work, this proved to be ineffective. In some cases convergence
slowed by a factor of 3 or 4. In others, little or no benefit was gained from the multigrid process.

The coarse-to-fine prolongation operator I: for corrections employs bilinear interpolation in
computational space where the grid spacing is taken to be uniform. For fine grid points adjacent
to boundaries, zero normal gradient is assumed for pressures. The overall convergence has
proven to be insensitive to the details of this approximation. The same operator with one
modification is also used to interpolate ‘converged’ results to obtain initial values on a fine grid in
the FMG process. The velocity component parallel to an adjacent wall is obtained by bilinear
extrapolation from the interior, since the boundary layer is poorly resolved on the coarse grid.

The multigrid solvers in this work have been coded to permit fixed ¥ and W-cycles. During the
course of this effort it was found that for the difficult cases with high Reynolds numbers or highly
stretched grids a W(1, 1) cycle was the most effective strategy in terms of robustness and
computational cost. Hence, all results presented in this paper were performed using this cycle.
Accomodative cycles,"* =8 which decide on whether or not to restrict to a coarser grid based on
the ratio of errors from two successive sweeps, proved to be too costly, since the second sweep on
each visit to a grid contributed little to the overall convergence of the method.

The symmetric sweeping pattern described in Section 3 has been interleaved with the multigrid
process. A sweep counter is established for every grid level and on each visit to that level the next
direction in the sweep pattern for that grid is performed. This proved to be sufficient to give all the
convergence benefits of the sweeping symmetry. Finally, it should be noted that varying the
momentum relaxation factor r,, from grid to grid during the cycle provided considerable
performance enhancement for the BGS, PLBGS and LBGS solvers. However, no benefit was
observed when this was tried with the SIMPLE-based solver,

5. CONVERGENCE CRITERIA

The various convergence criteria used in this work are all based on an L, norm of the dynamic
velocity changes occurring during a sweep through the grid. This would seem to be a more
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appropriate form for a system of coupled equations than one based on a combination of the
residuals of the different equations. The pressures have been excluded, since they are only
determined to within an arbitrary constant. Introduce the definition

LW

8"=\/{ ) [(Aui‘.j)z+(Av§‘,j)2]/(2n'§n';)}, (22)
i,j=1

where n and n',‘ are the number of cells on grid k in x and y, respectively, and Au} ;, Av} ; are the

dynamic velocity changes obtained during a sweep on grid k. Then for a sequence of coarse-

to-fine grids, k=1 to m, the overall convergence criterion on grid m is taken as

& <1078, 23)

In most cases at convergence given by equation (23) the value of max(Au, Av) is approximately
1073, For intermediate grids in the FAS-FMG process, convergence before interpolating to the
next finer grid is taken as

&<1073, 24)
and for the coarsest grid, k=1, ‘solution’ is given by
el <410, (25)

where now ¢* is the most recent error on the current finest grid.
Finally, it is noted that all computations in this work were performed on an Amdahl 5980 in
scalar mode. All cpu times reported in the next sections are for this machine.

6. COMPUTATIONAL RESULTS

Three problems have been chosen to test the performance of the multigrid solvers under different
conditions: flow in a driven cavity, developing flow in a straight channel, and flow over an open
cavity.

6.1. Driven cavity flow

The driven cavity is the prototypical recirculating flow and has long been used as a standard
test problem for Navier-Stokes solvers. The second-order streamfunction—vorticity results of
Ghia et al* are generally accepted as the standard. Flow is set up in a square cavity with three
stationary walls and a top lid that moves to the right with constant speed (1 =1). Streamfunction
contours for Re= 1000 and 5000 are shown in Figure 3, and u-velocities on the vertical centreline
computed on a uniform 256 x 256 grid for the same Reynolds numbers are compared with the
standard results* in Figure 4. At Re= 1000, the two computations agree within plotting accuracy.
At Re=35000, the discrepancy is a result of the excessive dissipation of the hybrid differencing
scheme.

The first set of results for this flow is for a uniform grid with Re varying from 100 to 5000.
Convergence plots of the L, norm of the velocity changes (L,AV) vs. work units are shown in
Figure 5 for all methods on a 256 x 256 grid where a work uvnit is the cpu time required for one
fine-grid sweep of the particular smoother. In this figure each symbol on a plot represents a single
fine-grid sweep and the horizontal offset from the origin is the initialization time on the coarser
grids. These plots give an indication of multigrid performance that is independent of the
differences in cpu time per sweep for each solver. On this basis all of the solvers are competitive
but BGS and PLBGS show a small advantage. Table I compares the uniform-grid results for each



NAVIER-STOKES EQUATIONS ON HIGHLY STRETCHED GRIDS 551

5000

Re = 1000 Re

Figure 3. Driven cavity stream function contours for Re = 1000 and 5000
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Figure 4. Driven cavity u-velocities on vertical centreline computed on a uniform 256 x 256 grid for Re = 1000 and 5000
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Figure 5. Driven cavity convergence histories for all methods on a uniform 256 x 256 grid
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Table 1. Driven cavity convergence on uniform grids for AR=1

Re

Scheme (r%,, 100 400 1000 3200 5000
{cpu seconds/fine-grid sweeps/work units)

128 x 128 grid—6 levels

BGS (07) 319 355 490 737 1041
8 9 12 18 26

225 250 34:5 51-4 730

PLBGS (0-3) 348 354 510 788 977
10 10 15 23 28

288 290 421 64-6 80-0

LBGS (0-8) 36-8 454 69-8 1056 1158
9 10 16 24 27

226 281 432 650 71-4

SIMPLE (0-7) 580 58-9 775 1340 1792
12 12 16 28 38

316 319 422 72:8 971

256 x 256 grid —7 levels

BGS (0-7) 1280 130-5 1312 2594 2941
8 8 8 16 18

222 226 227 449 50-2

PLBGS (0-8) 1140 1197 1239 2622 263-1
8 9 9 19 19

229 239 246 529 527

LBGS (0-3) 1419 144:5 1786 389-7 4238
8 8 10 23 24

214 217 270 59-3 64-4

SIMPLE (0-7) 2171 2186 2501 4146 491-4
11 11 12 20 24

249 251 286 475 563

solver on two grids in terms of cpu times, number of fine-grid sweeps and total work units for each
case. Here r® _ is the fine-grid relaxation factor for the solver. As the Reynolds number increases
and the grid is made finer, the table indicates a significant advantage for BGS and PLBGS over
LBGS and SIMPLE due to faster convergence and less cost per sweep. Also note that fewer
sweeps are needed on the finer grid for all methods.

The second set of results is obtained for Re= 1000 on a grid with hyperbolic tangent stretching
in x and y and the maximum mesh aspect ratio (AR) varying from 1 to 40. The grid for AR=10 is
shown in Figure 6. Convergence plots for all methods on a 256 x 256 grid are shown in Figure 7.
For this case it is seen that BGS and SIMPLE show substantially better multigrid performance
than the other two solvers. Table II compares the stretched-grid results for each solver on two
grid sizes. As AR is increased to large values and the number of grid points is increased, BGS is
seen to have a significant advantage over the other three methods in both number of sweeps and
cpu time. The use of highly stretched grids produces a strong asymmetry in the momentum



Table IL. Driven cavity convergence on stretched grids for Re=1000

AR

Scheme ('8, 1 5 10 20 40
(cu seconds/fine-grid sweeps/work units)

128 x 128 grid — 6 levels

BGS (0-6) 558 566 64-1 770 84-3
14 14 16 20 22
396 397 447 540 59-3
PLBGS (0-5) 636 556 63-3 763 771
19 16 19 23 23
525 455 517 62:6 626
LBGS (09) 79-4 951 94-7 1015 111-§
19 23 23 24 27
489 577 576 61-5 674
SIMPLE (0+7) 785 80-6 80-10 89-3 961
16 17 17 18 20
42:1 42-7 428 466 514

256 x 256 grid — 7 levels

BGS (0-6) 160-1 1622 1631 1932 191-3
10 10 10 12 12
278 279 279 328 329
PLBGS (0-5) 1711 171-3 1986 251-1 2849
12 12 14 18 21
342 339 393 499 563
LBGS (09) 1459 1854 2522 3528 4909
8 11 15 21 29
220 27-5 374 522 72-2
SIMPLE (0-7) 2482 2210 2220 2514 290-8
12 11 11 12 14
285 253 253 285 331
y
100
ors
l
050
025
0.004 = = |
000 025 050 075 1.00
X

Figure 6. Driven cavity stretched grid with AR =10
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Figure 7. Driven cavity convergence histories for all methods on a stretched 256 x 256 grid
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equation coupling coefficients [equations (9)] in regions of high mesh aspect ratio and this was
expected to adversely affect the smoothing properties of an explicit scheme?! such as BGS. The
alternating direction semi-implicit and fully implicit schemes were introduced to see if they would
give more robust performance for these cases. This proved not to be true for the Navier—Stokes
solvers used in this study.

6.2. Developing channel flow

The second test problem is the deceptively simple one of developing flow in a straight channel
one unit high and four units long. Uniform velocities (u= 1, v=0) are specified at the entrance and
a constant pressure (p=0) is set at the exit. Note, for incompressible flow, the common exit
condition, du/0x =0, implies dv/dy =03p/dy =0. Profiles of u vs. y along the channel for Re =1000
and 5000 are shown in Figure 8. For these Reynolds numbers, the flow is far from fully developed
at the exit. This flow has velocities strongly aligned with the x-direction over much of the domain
and the u-momentum equation becomes increasingly decoupled in y away from the walls as Re is
increased. This situation is known to cause problems for multigrid solvers (see e.g. References 1
and 16) and, thus, was chosen as a fitting test case for this study.

The first set of results is for a uniform grid with Re again varying from 100 to 5000.
Convergence plots of L,AV vs. work units for all methods on a 256 x 64 grid are shown in
Figure 9. It is evident that the multigrid performance of all the solvers degrades more rapidly with
increasing Re than was the case for the driven cavity with SIMPLE falling off much more than the
others. The uniform-grid results for each solver on two grids are compared in Table III and
confirm those shown by Figure 9 when both fine-grid sweeps and cpu time are considered. The

Re = 1000
y
10—
0.0'1 —T T T T T T T / T
00 05 10 15 20 25 30 35 40 45 50
X
Re = 5000
y

T T T Y

50

Wi T
” 1 T —r T ¥ T T
20 25 30 s 4.0 45

00 o5 10 15
X

Figure 8. Developing channel u-velocity profiles for Re=1000 and 5000
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Figure 9. Developing channel convergence histories for all methods on a uniform 256 x 64 grid
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Table III. Developing channel convergence on uniform grids for AR=1

Re

Scheme (r%, ) 100 400 1000 3200 5000
(cpu seconds/fine-grid sweeps/work units)

128 x 32 grid—4 levels

BGS (0:7) 10-3 165 244 463 531
10 16 24 48 58
272 435 648 122:2 140-4
PLBGS (0-8) 9-5 151 244 410 50-2
11 16 28 48 60
298 472 754 1269 1557
LBGS (0-8) 114 182 262 329 41-3
10 16 24 32 40
271 430 61-6 782 970
SIMPLE (0-7) 169 287 50-5 849 934
14 24 44 80 88
361 60-9 1075 1817 198-4
256 x 64 grid — 5 levels
BGS (07) 425 44-0 666 129-1 2064
10 10 16 32 52
280 285 442 85-4 1354
PLBGS (0-8) 369 40-8 59-7 1182 1417
10 11 16 32 40
281 309 454 89-9 108-0
LBGS (0-8) 453 499 732 1441 1777
10 11 16 32 40
263 289 42-4 833 102-3
SIMPLE (0:7) 600 793 120-5 264-1 3500
12 16 24 56 76
317 41-6 636 1399 184-5
y
104 =
05
0.0" T T T T ™ T ~r T Y
0.0 05 10 15 20 25 30 a5 40
X

Figure 10. Developing channel stretched grid with AR =10
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relatively poor performance of SIMPLE is probably due to the partial decoupling between u and
v at high Re which was observed during the iterative process. However, note that all methods still
converged in under 100 fine-grid sweeps even at the highest Reynolds numbers.

The second set of results for this flow is for hyperbolic tangent stretching in y only, again with
AR varying from 1 to 40 and Re = 1000. The grid for AR =10 is shown in Figure 10. Convergence
plots for all methods on a 256 x 64 grid are shown in Figure 11. Here it is obvious that LBGS
shows markedly better multigrid performance than the other methods. Stretched-grid results for
each solver on two grid sizes are compared in Table IV. As AR is increased to large values for
each grid size, it is evident that LBGS has a major advantage over the other smoothers in both
fine-grid sweeps and cpu time. This case of strong alignment on a stretched grid is the only one in
which an implicit scheme (LBGS) has a substantial advantage over the explicit BGS.

Table IV. Developing channel convergence on stretched grids for Re=1000

AR

Scheme (rfg,, 1 5 10 20 40
(cpu seconds/fine-grid sweeps/work units)

128 x 32 grid—4 levels

BGS (07) 24-6 50-6 554 487 419
24 54 58 50 42

64:6 1313 1442 1264 108-5

PLBGS (0-7) 310 340 410 449 553
36 40 48 52 64

960 103-2 1255 1379 170-4

LBGS (0-85) 301 218 21-8 220 231
28 20 20 20 20

710 50-4 50-8 511 534

SIMPLE (0-7) 50-4 491 623 707 70-7
44 44 56 64 64

1072 103-7 130-8 1489 1488

256 x 64 grid — S levels

BGS (0-7) 669 896 1226 198-8 1771
16 22 30 50 44

442 583 787 1288 1139

PLBGS (0-7) 737 723 95-5 1144 167-3
20 20 27 32 47

557 538 710 857 125-4

LBGS (0-85) 73-3 468 642 657 755
16 10 14 14 16

42-4 267 363 374 427

SIMPLE (0-7) 1199 97-8 1145 1344 2092
24 20 24 28 44

63-6 508 596 70-0 1077
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Figure 11. Developing channel convergence histories for all methods on a stretched 256 x 64 grid
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6.3. Open cavity flow

The final test problem combines the driven cavity and developing channel flows and adds the
complication of a strong corner singularity. The domain consists of a channel one unit high and
two units long on the top of an open cavity one unit square located at the left boundary. Uniform
flow (u=1, v=0) enters the channel at the left and exits at the right (p=0). Streamfunction and
vorticity contours for Re=1000 are shown in Figure 12. Note the lack of separation and the
strong concentration of vorticity contours at the downstream corner.

As before the first set of results is for a uniform grid with Re varying from 100 to 5000.
Convergence plots of L, AV vs. work units for all methods on a 128 x 128+ 256 x 128 grid are
shown in Figure 13. As was the case with the channel flow the multigrid performance of SIMPLE
is seen to degrade more rapidly than that of the other methods as Re is increased. The
uniform-grid results for each solver on two grids are compared in Table V. The results for
fine-grid sweeps and cpu time confirm that BGS, PLBGS and LBGS remain competitive as
Reynolds number is increased but SIMPLE suffers a substantial penalty.

The second set of results for this flow is for hyperbolic tangent stretching in both x and y, in
each of three square regions, with AR varying from 1 to 40 and Re=1000. The grid for AR =101s
shown in Figure 14. Convergence plots for all methods on a 128 x 128 + 256 x 128 grid are shown
in Figure 15. In this case, BGS shows a small advantage over the other methods in multigrid
performance. The stretched-grid results for each solver on two grid sizes are compared in
Table VI. Here it is evident that BGS has a significant advantage in fine-grid sweeps and cpu time
as AR increases. It should also be noted that PLBGS and LBGS appeared to be more sensitive to
the presence of the corner singularity and to the choice of rym for the set of grids used in the
multigrid process. However, no detailed study of this effect was performed.

y
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Figure 12. Open cavity stream function (left) and vorticity (right) contours for Re=1000
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Figure 13. Open cavity convergence histories for all methods on a uniform 128 x 128 +256 x 128 grid



Table V. Open cavity convergence on uniform grids for AR=1

Re

Scheme (rf&,,, 100 400 1000 3200 5000
(cpu seconds/fine-grid sweeps/work units)

64 x 64 + 128 x 64 grid — 5 levels

BGS (0-7) 342 354 48-8 108-1 1349
10 10 14 32 40
281 290 40-3 885 110-0
PLBGS (0-8) 297 329 483 926 1181
10 11 16 32 40
287 316 464 89-6 1135
LBGS (0-8) 358 453 593 101-3 1241
10 12 16 28 35
265 334 439 756 925
SIMPLE (0-7) 476 626 951 1937 2538
12 16 24 52 68
312 417 629 1279 1670
128 x 128 +256 x 128 grid — 6 levels
BGS (0-7) 1159 1167 1442 2412 3559
8 8 10 16 24
216 21-8 271 449 664
PLBGS (0-8) 102-5 1279 1291 2334 304-7
8 10 10 19 24
220 275 277 50-3 654
LBGS (0-8) 1231 1259 167-4 3054 3779
8 8 11 20 24
210 213 285 524 64-6
SIMPLE (0-7) 1797 209-8 2797 4862 681-4
11 12 16 28 40
255 299 396 687 96-1
y
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Figure 14. Open cavity stretched grid with AR=10
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Figure 15. Open cavity convergence histories for all methods on a stretched 128 x 128 +256 x 128 grid
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Table V1. Open cavity convergence on stretched grids for Re =1000

AR

Scheme () 1 S 10 20 40
{cpu seconds/fine-grid sweeps/work units)

64 x 64+ 128 x 64 grid—>5 levels

BGS (0-7) 48-8 40-8 473 59-9 672
14 12 14 18 20
402 331 383 48-8 547
PLBGS (0-5) 90-8 469 472 583 791
32 16 16 20 28
881 452 458 56:1 768
LBGS (0-85) 590 535 524 647 657
16 15 15 18 19
43-8 391 383 472 48-1
SIMPLE (0-7) 954 64-0 637 774 91-3
24 16 16 20 24
630 422 419 50-8 598
128 x 128 4256 x 128 grid — 6 levels
BGS (0-7) 1453 1437 1449 1450 1734
10 10 10 10 12
271 267 268 269 321
PLBGS (0-5) 250-8 1539 1570 181-7 2069
20 12 13 15 17
539 329 337 390 44-1
LBGS (0:95) 161-5 1623 161-2 2195 2193
10 11 11 15 15
276 274 272 371 370
SIMPLE (0-7) 2781 2080 207-6 2080 2721
16 12 12 12 16
397 295 29-5 29-5 385

7. CONCLUSIONS

From the above results, it is evident that a proper combination of tailored multigrid elements can
yield a fast robust solver for the steady incompressible Navier-Stokes equations even on highly
stretched grids. In particular, for fine-to-coarse restriction of residuals, the use of full weighting is
important on stretched grids. For coarse-to-fine prolongation of corrections, on the other hand,
bilinear interpolation works well and is insensitive to the details of the boundary treatment.
Finally, a fixed W(1, 1) multigrid cycle appears to offer a good mix of robustness and computa-
tional efficiency.

For recirculating flows such as the driven cavity, all four smoothers are effective and competi-
tive. On uniform grids BGS and PLBGS offer a significant advantage over LBGS and SIMPLE,
primarily due to less cost per sweep. On stretched grids, BGS and SIMPLE show superior
multigrid performance but BGS is substantially cheeper per sweep.
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For strongly aligned flows such as that in a developing channel, all four solvers degrade more
rapidly with increasing Reynolds number than for recirculating flows with SIMPLE falling off
much more rapidly than the others, but they all still converge in under 100 fine-grid sweeps.
However, on highly stretched grids, LBGS offers a major advantage in both multigrid perfor-
mance and net cpu time over the other three smoothers. This is the only case in which an implicit
scheme is distinctly superior to the explicit BGS.

For mixed recirculating/aligned flows such as the open cavity, all four smoothers are effective.
On uniform grids, SIMPLE again degrades much more rapidly than the others with increasing
Reynolds number. On stretched grids BGS offers a small advantage in multigrid performance, but
this becomes significant when net cpu time is considered. It is also notable that BGS is less
sensitive than the other smoothers to the corner singularity in this flow.

On balance, BGS offers the best mix of robustness and computational speed for all three classes
of flows. The semi-implicit schemes PLBGS and SIMPLE offer little or no advantage and, in
general, are less robust. The fully implicit LBGS is superior only for the case of highly aligned
flows on stretched grids. The pressure correction scheme SIMPLE is, in general, more costly than
the other three and degrades much more rapidly than the others with increasing Reynolds
number. Finally, since convergence rates using the first-order hybrid scheme are so fast, improv-
ing convective differencing from first-order upwind to second-order central by a defect correction
procedure similar to that of Thompson and Ferziger® should be well worth the extra cost in
increased work units for convergence. Also, for a general multigrid solver set up using domain
decomposition, it might be highly effective to use BGS over most domains but retain the option to
use LBGS in strongly aligned domains.
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